Pluriassociative algebras I: The pluriassociative operad
نویسندگان
چکیده
Diassociative algebras form a categoy of algebras recently introduced by Loday. A diassociative algebra is a vector space endowed with two associative binary operations satisfying some very natural relations. Any diassociative algebra is an algebra over the diassociative operad, and, among its most notable properties, this operad is the Koszul dual of the dendriform operad. We introduce here, by adopting the point of view and the tools offered by the theory of operads, a generalization on a nonnegative integer parameter γ of diassociative algebras, called γ-pluriassociative algebras, so that 1-pluriassociative algebras are diassociative algebras. Pluriassociative algebras are vector spaces endowed with 2γ associative binary operations satisfying some relations. We provide a complete study of the γ-pluriassociative operads, the underlying operads of the category of γ-pluriassociative algebras. We exhibit a realization of these operads, establish several presentations by generators and relations, compute their Hilbert series, show that they are Koszul, and construct the free objects in the corresponding categories. We also study several notions of units in γ-pluriassociative algebras and propose a general way to construct such algebras. This paper ends with the introduction of an analogous generalization of the triassociative operad of Loday and Ronco.
منابع مشابه
Pluriassociative algebras II: The polydendriform operad and related operads
Dendriform algebras form a category of algebras recently introduced by Loday. A dendriform algebra is a vector space endowed with two nonassociative binary operations satisfying some relations. Any dendriform algebra is an algebra over the dendriform operad, the Koszul dual of the diassociative operad. We introduce here, by adopting the point of view and the tools offered by the theory of opera...
متن کاملA∞-morphisms with Several Entries
We show that morphisms from n A∞-algebras to a single one are maps over an operad module with n+ 1 commuting actions of the operad A∞, whose algebras are conventional A∞-algebras. The composition of A∞-morphisms with several entries is presented as a convolution of a coalgebra-like and an algebra-like structures. Under these notions lie two examples of Cat-operads: that of graded modules and of...
متن کاملar X iv : q - a lg / 9 70 20 14 v 1 1 0 Fe b 19 97 Higher - Dimensional Algebra III : n - Categories and the Algebra of Opetopes
We give a definition of weak n-categories based on the theory of operads. We work with operads having an arbitrary set S of types, or ‘S-operads’, and given such an operad O, we denote its set of operations by elt(O). Then for any S-operad O there is an elt(O)-operad O+ whose algebras are S-operads over O. Letting I be the initial operad with a one-element set of types, and defining I0+ = I, I(...
متن کاملOn the Homotopy of Simplicial Algebras over an Operad
According to a result of H. Cartan (cf. [5]), the homotopy of a simplicial commutative algebra is equipped with divided power operations. In this paper, we provide a general approach to the construction of such operations in the context of simplicial algebras over an operad. To be precise, we work over a fixed field F, and we consider operads in the category of F-modules. An operad is an algebr...
متن کاملOperads as Polynomial 2-monads
In this article we give a construction of a polynomial 2-monad from an operad and describe the algebras of the 2-monads which then arise. This construction is different from the standard construction of a monad from an operad in that the algebras of our associated 2-monad are the categorified algebras of the original operad. Moreover it enables us to characterise operads as categorical polynomi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017